Skip to main content

2 Supermassive Black Holes Are Locked in The Tightest Orbit We've Seen Yet

  A dance of death is taking place at the heart of a galaxy in the distant Universe.
Some 10 billion light-years away, two supermassive black holes are locked in an orbit so tight that they will collide with each other and form one much larger black hole in the relatively short time of just 10,000 years.

That equates to an orbital distance of just 0.03 light-years, around 50 times the average distance between the Sun and Pluto. Yet, so fast are they moving that it takes just two Earth years for the two objects to complete a binary orbit, compared to Pluto's 248 years.
There are multiple reasons why supermassive black hole binaries are of interest to astronomers.
Supermassive black holes are found at the centers of most galaxies, the nuclei around which everything else whirls. When two are found together, it indicates that two galaxies have come together.

We know this process occurs, so finding a supermassive black hole binary can tell us what it looks like in the final stages.
Supermassive black hole binaries can also tell us something about how these colossal objects – millions to billions of times the mass of the Sun – can get so incredibly massive.
Binary black hole mergers are one way this growth can occur. Finding binary supermassive black holes will help us understand if it's a common pathway for this growth, and that could lead to more accurate modeling.

The object in question is a quasar, named PKS 2131-021. These are galaxies in which the galactic nucleus is active; that is, the supermassive black hole is accreting matter at a furious rate, blazing with the heat generated by friction and gravity in the material roiling around the nucleus.
Some quasars blast jets of plasma almost at light-speed from the polar regions of the black hole, funneled along and accelerated by magnetic field lines around the object's exterior. PKS 2131 is a quasar blasting out a jet right in the direction of Earth, making it what we call a blazar.
A team of astronomers studying brightness variations in quasars noticed something odd about the PKS 2131 blazar beam in radio frequencies, finding the same signature in data collected back in 2008. It seemed to oscillate on regular timescales, its brightness fluctuating with an almost perfect sine wave pattern never before seen in a quasar.

"PKS 2131 was varying not just periodically, but sinusoidally," astronomer Tony Readhead of Caltech said. "That means that there is a pattern we can trace continuously over time."
The trail seemed to end when only two more peaks were found in archival data, one in 2005, and another in 1981. But then, in 2021, the project piqued the interest of astronomer Sandra O'Neill of Caltech. She and a team of researchers revisited data archives to see how far back in time they could trace this strange pattern.

They hit paydirt. In data from the Haystack Observatory made between 1975 and 1983, more of the pattern emerged, consistent with the timing of the rest of the observations.
"When we realized that the peaks and troughs of the light curve detected from recent times matched the peaks and troughs observed between 1975 and 1983, we knew something very special was going on," O'Neill said.
According to the team's analysis, the regular 'ticking' of the signal is generated by the orbital motion of the two black holes. As they go around each other on two-year timescales, the radio light dims and brightens, due to the orbital motion of the jet, which causes a Doppler shift that boosts the light when the black hole is moving towards us.

The archival data shows that this sine wave can be observed consistently for eight years from 1976, after which it disappeared for 20 years. This was probably due to a change or disruption in the supply of material feeding into the supermassive black hole. After 20 years, the pattern re-emerged, and has continued ever since, about 17 years now, the researchers said.
Another similar system, OJ 287, suggests that the interpretation is valid. This blazar has two close supermassive black holes orbiting each other every 12 years, at a separation of a third of a light-year. It shows fluctuations in radio brightness, too, albeit more irregularly and without the sinusoidal waveform.
Although we won't be around to see the eventual merger of the supermassive black holes in PKS 2131, they could show us how to look for similar systems. In turn, these could bring us closer to understanding how these colossal collisions take place

Comments

Popular posts from this blog

Largest payload on board mission to study Sun has handed over to ISRO - in English & தமிழ்

English Tamil In a milestone in the development of space astronomy in India, the Indian Institute of Astrophysics (IIA) has built the Visible Emission Line Coronagraph (VELC), the largest payload that would fly on Aditya L1, the country's first dedicated scientific mission to study the Sun. It is expected to be launched by Indian Space Research Organisation by middle of this year.  The VELC payload has formally handed over to ISRO Chairman S Somanath at IIA's CREST campus on Thursday.  There are other six payloads: Solar Ultraviolet Imaging Telescope, Aditya Solar Wind Particle Experiment, Plasma Analyser Package for Aditya, Solar Low Energy X-ray Spectrometer, High Energy L1 Orbiting X-ray Spectrometer, and Magnetometer.  சூரியனை ஆய்வு செய்வதற்கான பயணத்தில் மிகப்பெரிய பேலோட் இஸ்ரோவிடம் ஒப்படைக்கப்பட்டது   இந்தியாவில் விண்வெளி வானியல் வளர்ச்சியில் ஒரு மைல்கல்லாக, இந்தியன் இன்ஸ்டிடியூட் ஆப் ஆஸ்ட்ரோபிசிக்ஸ் (IIA) விசிபிள் எமிஷன் லைன் கரோனாகிராஃப் (...

Agnikul opens India's first rocket engine factory in Chennai

Space tech startup Agnikul Cosmos today inaugurated India's first-ever facility to manufacture 3D-printed rocket engines in Chennai. Named Rocket Factory 1, it was unveiled by Tata Sons chairman N Chandrasekaran and Isro chairman S Somanath in the presence of Pawan Goenka, the chairman of IN-SPACe (Indian National Space Promotion and Authorization Centre). The 10,000-square-foot facility is located at IIT-Madras Research Park. It will have a 400mm x 400mm x 400mm metal 3D-printer from  EOS that will enable end-to-end manufacturing of a rocket engine under one roof. The manufacturing facility has a capacity to make two rocket engines per week and thereby one launch vehicle every month, Agnikul co-founder Srinath Ravichandran told TOI. "This s a milestone for us as we go from R&D phase into core manufacturing with the opening of this facility, and begin productionizing the launch vehicle engine making. We have a lot of inbound interest [for launches] from global quarters...

Possible sign of Mars life? Curiosity rover finds 'tantalizing' Red Planet organics

NASA's Curiosity rover has found some interesting organic compounds on the Red Planet that could be signs of ancient Mars life, but it will take a lot more work to test that hypothesis. Some of the powdered rock samples that Curiosity has collected over the years contain organics rich in a type of carbon that here on Earth is associated with life, researchers report in a new study.  But Mars is very different from our world, and many Martian processes remain mysterious. So it's too early to know what generated the intriguing chemicals, study team members stressed. "We're finding things on Mars that are tantalizingly interesting, but we would really need more evidence to say we've identified life," Paul Mahaffy, who served as the principal investigator of Curiosity's Sample Analysis at Mars (SAM) chemistry lab until retiring from NASA's Goddard Space Flight Center in Greenbelt, Maryland, in December 2021, said in a statement. "So we'...