Skip to main content

China's $1 trillion 'artificial sun' fusion reactor just got five times hotter than the sun

China's "artificial sun" has set a new world record after superheating a loop of plasma to temperatures five times hotter than the sun for more than 17 minutes, state media reported. 


The EAST (Experimental Advanced Superconducting Tokamak) nuclear fusion reactor maintained a temperature of 158 million degrees Fahrenheit (70 million degrees Celsius) for 1,056 seconds, according to the Xinhua News Agency. The achievement brings scientists a small yet significant step closer to the creation of a source of near-unlimited clean energy.

The Chinese experimental nuclear fusion reactor smashed the previous record, set by France's Tore Supra tokamak in 2003, where plasma in a coiling loop remained at similar temperatures for 390 seconds. EAST had previously set another record in May 2021 by running for 101 seconds at an unprecedented 216 million F (120 million C). The core of the actual sun, by contrast, reaches temperatures of around 27 million F (15 million C).

"The recent operation lays a solid scientific and experimental foundation towards the running of a fusion reactor," experiment leader Gong Xianzu, a researcher at the Institute of Plasma Physics of the Chinese Academy of Sciences, said in a statement. 

Scientists have been trying to harness the power of nuclear fusion — the process by which stars burn — for more than 70 years. By fusing hydrogen atoms to make helium under extremely high pressures and temperatures, so-called main-sequence stars are able to convert matter into light and heat, generating enormous amounts of energy without producing greenhouse gases or long-lasting radioactive waste.


But replicating the conditions found inside the hearts of stars is no simple task. The most common design for fusion reactors, the tokamak, works by superheating plasma (one of the four states of matter, consisting of positive ions and negatively-charged free electrons) before trapping it inside a donut-shaped reactor chamber with powerful magnetic fields.

Keeping the turbulent and superheated coils of plasma in place long enough for nuclear fusion to happen, however, has been a painstaking process. Soviet scientist Natan Yavlinsky designed the first tokamak in 1958, but no one has ever managed to create an experimental reactor that is able to put out more energy than it takes in.

One of the main stumbling blocks has been how to handle a plasma that's hot enough to fuse. Fusion reactors require very high temperatures — many times hotter than the sun — because they have to operate at much lower pressures than where fusion naturally takes place inside the cores of stars. Cooking plasma to temperatures hotter than the sun is the relatively easy part, but finding a way to corral it so that it doesn’t burn through the reactor walls (either with lasers or magnetic fields) without also ruining the fusion process is technically tricky.

EAST is expected to cost China more than $1 trillion by the time the experiment finishes running in June, and it is being used to test out technologies for an even bigger fusion project — the International Thermonuclear Experimental Reactor (ITER) — that’s currently being built in Marseille, France.

Set to be the world's largest nuclear reactor and the product of collaboration between 35 countries — including every state in the European Union, the U.K., China, India and the U.S. — ITER contains the world's most powerful magnet, making it capable of producing a magnetic field 280,000 times as strong as the one around the Earth, Live Science previously reported. The fusion reactor is expected to come online in 2025, and it will provide scientists with even more insights into the practicalities of harnessing star power on Earth.

China is also pursuing more of its own programs to develop nuclear fusion power — it is conducting inertial confinement fusion experiments and is planning to complete a new tokamak by the early 2030s.

Elsewhere, the first viable fusion reactor could be completed in the United States as soon as 2025, and a British company hopes to be commercially generating electricity from fusion by 2030.

Comments

Popular posts from this blog

Largest payload on board mission to study Sun has handed over to ISRO - in English & தமிழ்

English Tamil In a milestone in the development of space astronomy in India, the Indian Institute of Astrophysics (IIA) has built the Visible Emission Line Coronagraph (VELC), the largest payload that would fly on Aditya L1, the country's first dedicated scientific mission to study the Sun. It is expected to be launched by Indian Space Research Organisation by middle of this year.  The VELC payload has formally handed over to ISRO Chairman S Somanath at IIA's CREST campus on Thursday.  There are other six payloads: Solar Ultraviolet Imaging Telescope, Aditya Solar Wind Particle Experiment, Plasma Analyser Package for Aditya, Solar Low Energy X-ray Spectrometer, High Energy L1 Orbiting X-ray Spectrometer, and Magnetometer.  சூரியனை ஆய்வு செய்வதற்கான பயணத்தில் மிகப்பெரிய பேலோட் இஸ்ரோவிடம் ஒப்படைக்கப்பட்டது   இந்தியாவில் விண்வெளி வானியல் வளர்ச்சியில் ஒரு மைல்கல்லாக, இந்தியன் இன்ஸ்டிடியூட் ஆப் ஆஸ்ட்ரோபிசிக்ஸ் (IIA) விசிபிள் எமிஷன் லைன் கரோனாகிராஃப் (...

Agnikul opens India's first rocket engine factory in Chennai

Space tech startup Agnikul Cosmos today inaugurated India's first-ever facility to manufacture 3D-printed rocket engines in Chennai. Named Rocket Factory 1, it was unveiled by Tata Sons chairman N Chandrasekaran and Isro chairman S Somanath in the presence of Pawan Goenka, the chairman of IN-SPACe (Indian National Space Promotion and Authorization Centre). The 10,000-square-foot facility is located at IIT-Madras Research Park. It will have a 400mm x 400mm x 400mm metal 3D-printer from  EOS that will enable end-to-end manufacturing of a rocket engine under one roof. The manufacturing facility has a capacity to make two rocket engines per week and thereby one launch vehicle every month, Agnikul co-founder Srinath Ravichandran told TOI. "This s a milestone for us as we go from R&D phase into core manufacturing with the opening of this facility, and begin productionizing the launch vehicle engine making. We have a lot of inbound interest [for launches] from global quarters...

Gaganyaan Testing Commences - ISRO Chairman K. Sivan

              India's flagship GAGANYAAN project has completed the design phase and has entered into the testing phase. Tests are in progress for human rated Ll 10 Vikas engine, Cryogenic stage, Crew escape system motors and service module propulsion system. S200 motor has been realized for ground test too. Main parachute drop test has also commenced. Astronauts have completed the generic spaceflight training abroad. The Indian leg of mission specific training has also commenced. A comprehensive training plan has been worked out and state-of-the art accommodation cum training facility has been established for the same. There is a directive to launch the first unmanned mission before 75th anniversary of India's independence and all the stake-holders are putting their best effort to meet the schedule. I am sure that we will be able to meet this target. Crew Module Atmospheric Re-entry Experiment        On 13 February 2014, Hindus...